Acceleration Questions

Examples: Find the acceleration of a car moving at $105 \mathrm{~km} / \mathrm{h}$ that comes to a stop in 6.0 s .

$$
a=\frac{v_{2}-v_{1}}{t}=\frac{0-29.2}{6.0}=-4.9
$$

Example: Find the time required for a plane to change its velocity from $250 \mathrm{~km} / \mathrm{h}$ [S] to $250 \mathrm{~km} / \mathrm{h}$ [N] while accelerating uniformly at

$$
\begin{aligned}
& 8.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}] \\
& a=8.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}] \\
& V_{1}=250 \cdot K_{\mathrm{m}} / \mathrm{h}[\mathrm{~s}]=69.4 \mathrm{~m} / \mathrm{s}[\mathrm{~s}] \\
& V_{2}=250 \mathrm{~km} / \mathrm{h}[N]=69.4 \mathrm{~m} / \mathrm{s}[\mathrm{~N}] \\
& t=\text { ? } \\
& {[n]=-[s]} \\
& \bar{a}=\frac{\bar{v}_{2}-\bar{v}_{1}}{t} \\
& {[5]=-[N]} \\
& 8.0^{[5 N]}=\frac{69.4[N]-69.4[s]}{t} \\
& 8.0=\frac{69.4+69.4}{t} \\
& t=\frac{138.8}{8.0}=17.35 \mathrm{~s}
\end{aligned}
$$

