The 5 Equations of Constant Acceleration

$$
\begin{aligned}
& d=\text { area under the graph } \\
& \square \\
& d=v_{1} t+1 / 2\left(v_{2}-v_{1}\right) t \\
& d=v_{1} t+1 / 2(a t) t \\
& d=v_{1} t+1 / 2 a t^{2}
\end{aligned}
$$

3

$d=$ area of large rectangle - area of triangle
$\square_{d=} \Delta_{2} t-1 / 2\left(v_{2}-v_{1}\right) t$
$\sqrt{ } E_{q} n 1$
$d=v_{2} t-1 / 2(a t) t$

$$
d=v_{2} t-1 / 2 a t^{2}
$$

4. Go back to \#2

$$
\begin{aligned}
& d=v_{1} t+1 / 2\left(v_{2}-v_{1}\right) t \\
& d=\frac{2 v_{1} t+\left(v_{2}-v_{1}\right) t}{2}
\end{aligned}
$$

$$
d=\frac{2 v_{1}}{} \frac{t+v_{2}}{2} \frac{t-v_{1} t}{}
$$

$$
d=v_{1} \frac{t+v_{2} t}{2}
$$

$$
\mathrm{d}=\frac{\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{t}}{2}
$$

Note: $\mathrm{v}_{\text {average }}=\frac{\underline{v}_{1}+\underline{v}_{2}}{2}$
5. Go back to \# 1
5. $a=\underline{v}_{2}-v_{1}$ Rearrage for v_{2}
$\mathrm{v}_{2}=\mathrm{v}_{1}+$ at Square both sides
$\mathrm{v}_{2}{ }^{2}=\left(\mathrm{v}_{1}+\mathrm{at}\right)^{2}$ — Foil
$v_{2}{ }^{2}=v_{1}^{2}+2 v_{1} a t+a^{2} t^{2}$ Move v_{1}^{2} to other side
$v_{2}^{2}-v_{1}^{2}=2 v_{1} a t+a^{2} t^{2}$ factor out 2a from all terms on RHS
$v_{2}{ }^{2}-v_{1}^{2}=2 a\left(v_{1} t+1 / 2 a t^{2}\right) \longleftarrow$ Equation \# 2
$\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}^{2}=2 \mathrm{ad}$
$=d$

Each of these five equations

 holds true for any object that has a constant acceleration. So memorize them!Quiz Feb 25

Equation	d	a	v_{2}	v_{1}	t
1	x	\checkmark	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	x	\checkmark	\checkmark
3	\checkmark	\checkmark	\checkmark	\times	\checkmark
4	\checkmark	\times	\checkmark	\checkmark	\checkmark
5	\checkmark	\checkmark	\checkmark	\checkmark	\times

Example: Ethan is driving a really cool car at $100 \mathrm{~km} / \mathrm{h}$ when he suddenly brakes at $-20 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ coming to rest. What

$$
\begin{aligned}
& \text { distance does this deceleration take? } \\
& V_{1}=100 \mathrm{~km} / \mathrm{h} \div 3.6=27.8 \mathrm{~m} / \mathrm{s} \quad-\left(V_{1}^{2}\right) \\
& \begin{array}{ll}
v_{2}=0 & 2 a d=v_{2}^{2}-v_{1}^{2}
\end{array} \\
& t=2(-20) d=0^{2}-27.8^{2} \\
& \overbrace{\operatorname{pg} 72 * 54}^{d=?} \quad \frac{-40 d}{-40}=\frac{-772.84}{-40} \\
& d=19.3 \mathrm{~m}
\end{aligned}
$$

