The 5 Equations of Constant Acceleration

d = area under the graph

$$d = v_{1}t + \frac{1}{2}(v_{2}-v_{1})t$$

$$d = v_{1}t + \frac{1}{2}(at)t$$

$$d = v_{1}t + \frac{1}{2}at^{2}$$

d = area of large rectangle - area of triangle $d = v_{2}t - \frac{1}{2}(v_{2} - v_{1})t$ $d = v_{2}t - \frac{1}{2}(at)t$ $d = v_{2}t - \frac{1}{2}at^{2}$

$$d = v_1 t + \frac{1}{2} (v_2 - v_1) t$$

$$d = \frac{2v_{1}t + (v_{2} - v_{1})t}{2}$$

$$d = \frac{2v_1t + v_2t - v_1t}{2}$$

$$d = \underline{v_1 t + v_2 t}_2$$

$$d = \underline{(v_1 + v_2)t}{2}$$

5. Go back to # 1
5.
$$a = \frac{v_2 - v_1}{t}$$
 Rearrage for v_2
 $v_2 = v_1 + at$ Square both sides
 $v_2^2 = (v_1 + at)^2$ Foil
 $v_2^2 = v_1^2 + 2v_1at + a^2t^2$ Move v_1^2 to other side
 $v_2^2 - v_1^2 = 2v_1at + a^2t^2$ factor out 2a from all terms on RHS
 $v_2^2 - v_1^2 = 2a(v_1t + \frac{1}{2}at^2)$ Equation # 2
 $v_2^2 - v_1^2 = 2ad$

Each of these five equations holds true for any object that has a constant acceleration. So memorize them!

Equation	d	a	V ₂	\mathbf{V}_1	t
1	×				
2			×		
3				×	
4		×			
5					×

Example: Ethan is driving a really cool car at 100 km/h when he suddenly brakes at -20 m/s^2 coming to rest. What distance does this deceleration take?

