Operations with Significant Figures

* Always try to round off at the end of a calculation.

1. Addition/Subtraction
(round to the least accurate place value)
e.g. $2.2 \mathrm{~m}+6.35 \mathrm{~m}=8.55=8.6 \mathrm{~m}$

The sum cannot be more accurate than the least accurate measurement involved (smallest amount of decimals).
2. Multiplication/Division / Exponents.

The answer carries the least number of significant digits used in the calculation.

$$
\begin{equation*}
\text { e.g. } 41.25 \mathrm{~m} \mathrm{x}^{6.43 \mathrm{~m}=265.2375 \mathrm{~m}^{2}=265 \mathrm{~m}^{2}} \tag{4}
\end{equation*}
$$

(3)

The only "exact" quantities are numbers that are obtained by counting or by definition. i.e. $\#$ days in week 1 dozen $=12$ units

$$
100 \mathrm{~cm}=1 \mathrm{~m} \quad 1 \mathrm{~mole}=6.022 \times 10^{23}
$$

Example:

$$
\begin{aligned}
& 12.0-37.888+61 \\
= & 35.112 \\
\approx & 35
\end{aligned}
$$

Example:

$$
\begin{aligned}
75 / 0.0005 & =150000 \\
& \simeq 200000 \simeq 2 \times 10^{5}
\end{aligned}
$$

