Motion

Kinematics~ the study of motion
Dynamics~ the causes of motion

Vectors and Scalars

\} Mechanics

Scalar Quantities ~ have magnitude only (direction is not important).
i.e. time, mass, density, area, volume, speed, distance

Vector Quantities ~ have both a magnitude and direction
i.e. displacement, velocity, force, acceleration

Position and Displacement

1. Position is a vector quantity describing location

Example: Initial position 2 blocks west, final position 6 blocks east.
2. Displacement is the straight line distance from the starting position to the final position in that direction.
Example: $\overline{\Delta d}=\bar{d}_{f}-\bar{d}_{i}=6-(-2)=8$ blocks $[\varepsilon]$
2 change in
N.B ~ The distance would be the total length of the trip.

Example: $d=28$ blocks

Uniform Motion (CR constant velocity)

Motion that occurs at a constant speed in one direction.

Motion where the speed and/or direction are changing.
Example: A pendulum swinging, car rolling down a hill

Speed and Velocity

$$
\begin{aligned}
& \text { speed }=\frac{\text { distance }}{\text { time }} \\
& v=\mathrm{d} / \mathrm{t} \\
& \text { Units: } \mathrm{m} / \mathrm{s} \quad \mathrm{~km} / \mathrm{h}, \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

Example if I ran around a 400 m track in 40 s what is my speed and velocity?

$$
\begin{aligned}
V & =\frac{d}{t} \\
& =400 / 40=10 \mathrm{~m} / \mathrm{s}
\end{aligned} \quad \bar{V}=0 \mathrm{~m} / \mathrm{s}
$$

What is my speed in km / h ?

$$
\begin{aligned}
& 10 \frac{\alpha}{8} \times \frac{1 \mathrm{~km}}{1000 \mathrm{om}} \times \frac{3600 \mathrm{~s}}{\mathrm{~h}}=36 \mathrm{~km} / \mathrm{h} \\
& 10 \mathrm{~m} / \mathrm{s} \times 3.6 \mathrm{~km} / \mathrm{h} / / \mathrm{s}=36 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Example: a) Find the speed of a bullet travelling with uniform motion over a distance of 500.0 m in a time of 2.3 s .
b) convert the value to km / h

Example: Find the distance travelled by a giraffe that runs uniformly for 2.0 h at a speed of $12 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& \frac{\text { Givens }}{V=12 \mathrm{~m} / \mathrm{s} \times 3.6 \quad \text { Formula }} \\
& d=?=43.2 \mathrm{~km} / \mathrm{h} \quad \mathrm{~V}=\frac{\mathrm{d}}{\mathrm{t}} \\
& t=2.0 \mathrm{~h} \\
& O R \\
& V=12 \mathrm{~m} / \mathrm{s} \\
& d=\text { ? } \\
& t=2.0 \times 3600 \\
& =7200 \mathrm{~s} \quad d=12 \times 7200 \\
& \text { = } 86400 \mathrm{~m} \\
& \text { = } 86000 \mathrm{~m}
\end{aligned}
$$

Example: Mr Orange drives his car for 2.5 h at an average speed of $20.0 \mathrm{~m} / \mathrm{s}$. Mrs. Orange takes over driving for 1.5 h at an average speed of $28 \mathrm{~m} / \mathrm{s}$. Find the average speed of the trip. in m / s.

$$
\begin{array}{r|rrr}
\text { MaO. } & \text { Mrs O } & V=\frac{180+151.2}{2.5 \times 1.5} \\
\hline t=2.5 \mathrm{~h} & t=1.5 \mathrm{~h} & V \mathrm{~m} / \mathrm{s} & \\
V=20.0 \mathrm{~m} / \mathrm{s} & V=28 \mathrm{~m} / \mathrm{s} / \mathrm{h} & & =82.8 \mathrm{~km} / \mathrm{h} \\
& =72 \mathrm{~km} / \mathrm{h} & =100.8 \mathrm{~km} & \\
d & =72 \times 2.5 & \begin{aligned}
d & =100.8 \times 1.5 \\
& =180 \mathrm{~km} \\
& =151.2
\end{aligned} & =23 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
\begin{array}{r}
P 971=33-36 \\
40-42
\end{array}
$$

