Velocity Time Graphs and Acceleration
Draw a graph for the following data and draw a line of best fit with slope.

$\mathrm{t}(\mathrm{s})$	$\mathrm{v}(\mathrm{m} / \mathrm{s})$
0	0
10	1.5
20	3
30	4.5
40	6
50	7.5
60	9

~ The slope of a v-t graph equals acceleration.
\sim if the graph is a straight line this indicates uniform acceleration.
negative slops on a $\overline{\text { n }}$ g graph represents negative acceleration (deceleration)
Examples: Find the acceleration of a car moving at $105 \mathrm{~km} / \mathrm{h}$ that comes to a stop in 6.0 s .

Example: Find the time required for a plane to change its velocity from $250 \mathrm{~km} / \mathrm{h}$ [S] to $250 \mathrm{~km} / \mathrm{h}$ [N] while accelerating uniformly at $8.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~N}]$

